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Intermolecular zero-quantum coherences (iZQC) induced by the
dipolar demagnetizing field can give both P- and N-type cross peaks.
This paper shows that the relative intensities of the two types of iZQC
peaks follow a simple relation, tan2 (u/2), from both the quantum
(spin density matrix) and classical (modified Bloch equation) calcu-
lations. The experimental data and numerical simulations agree well
with the prediction. In addition, higher-order iZQCs are experimen-
tally examined for the first time and are explained by the quantum
picture in which dipolar couplings convert four-spin operators into
observable magnetization. © 1998 Academic Press

INTRODUCTION

Numerous 2D NMR experiments in solution give anomalous
cross peaks in the indirectly detected dimension because of the
dipolar demagnetizing field and radiation damping (1–13).
Radiation damping is usually the more significant effect with
most gradient-free sequences (e.g., a simple COSY-type se-
quence) (1, 3, 10); however, sequences with multiple-quantum
selective field gradient pulses (e.g., CRAZED or HOMOGE-
NIZED experiments) to suppress radiation damping exhibit
strong cross peaks due to the demagnetizing field (3, 8, 9, 13).
In uncoupled spin systems (e.g. mixtures of single-line sol-
vents) radiation damping does not generate cross peaks be-
tween spins at different resonance frequencies (|va 2 vb| @
1/tr, wheretr is the radiation damping time) but such inequiva-
lent-spin cross peaks are quite strong with the demagnetizing
field (3). Hence in the most common case (complex molecules
in a concentrated single-line solvent such as water) radiation
damping effects are mainly confined to the solvent, but demag-
netizing field effects can give solvent–solute cross peaks.

The additional peaks can have.10% of the intensity of the
diagonal peaks in a normal COSY experiment and can be
quantitatively understood with either classical (modified non-
linear Bloch equation) or quantum (density matrix) treatments.
These dipolar demagnetizing field effects, spatially modulated,
could act even as a source for extracting structural information
(14, 15). Hence, understanding the actual physical mechanism
for generating a dipolar demagnetizing field may be important.
Generally the quantum approach gives a clearer understanding
of their physical origin: the peaks come from intermolecular
multiple-quantum coherences (iMQCs) which originate in

multispin operators in the equilibrium density matrix and are
made observable by dipolar couplings.

In recent years, our group has concentrated its attention on
intermolecular zero-quantum coherences (iZQCs). Such coher-
ences have magnetic properties that are quite different from the
higher MQ coherences (13, 16). For example, iZQCs can suppress
long-range inhomogeneous broadening since they evolve at the
chemical shift differences between two spins. In addition, while
MQ-selective experiments using two pulse gradients (dephasing
and rephasing) can give only one of theP- or N-type cross peaks
corresponding to the relative direction of two gradient pulses, the
HOMOGENIZED sequence (p/2)y 2 t1 2 G 2 uy 2 t2 uses only
a dephasing gradient, and hence it can give both theP- andN-type
cross peaks (13). The relative intensity of the two types of peaks
varies according to the second RF pulse flip angle.

This paper reports analytical solutions for the relative intensi-
ties of the two types of peaks in the intermolecular ZQ coherences
between two different molecules, from both the quantum (density
matrix) and the classical (modified Bloch equation) perspectives.
We also present numerical simulations and experimental data for
comparison which show various higher-order ZQ coherences
(corresponding to four-spin flips) for the first time.

QUANTUM CALCULATION USING DENSITY
MATRIX THEORY

The observable zero-quantum coherences can be calculated
analytically using both the density matrix and the modified Bloch
equation. First we will sketch out the quantum calculation, which
readily predicts the relative intensities of the different peaks; then
we will derive the explicit analytical expression classically. In the
quantum picture we start with the equilibrium magnetizationreq

for two different kinds spinsI and S (uncoupled homonuclear
spins) without the high-temperature approximation (3, 8)

req 5 22~N1M! @P
i

~1 2 II zi! 3 P
k

~1 2 ISzk!# ;

I 5 2 tanhS\v0

2kTD , [1]

where the indicesi andk run up to the number ofI andSspins
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in the sample. The firstp/2 pulse rotates the equilibriumz
magnetization into transverse magnetization

r 5 22~N1M! @P
i

~1 2 II xi ! 3 P
k

~1 2 ISxk!# , [2]

which contains intermolecular zero-quantum coherences such
asI1i I2j andI1i S2k in theI2 terms. The second-order terms
give double- and zero-quantum coherences,

Ixi Ixj 5
1

4
@~I1i I2j 1 I2i I1j ! 1 ~I1i I1j 1 I2i I2j !#

IxiSxk 5
1

4
@~I1i S2k 1 I2i S1k! 1 ~I1i S1k 1 I2i S2k!#. [3]

During the delayt1 the termI1i S2k evolves at the difference of
resonance offsets (DvI 2 DvS), the termI1iI2j will not evolve at
all if the susceptibility is same in all sample regions. During the
first gradient pulse the operatorI1i S2k evolves at (DvI 1 gGzi) 2
(DvS 1 gGzk), the operatorI1i I2j evolves at (gGzi 2 gGzj).

The secondu pulse transfers these iZQCs into two-spin
single-quantum terms such asIxiIz j and IxiSzk, which can be
rendered observable by a number of small intermolecular di-
polar couplings (of the formsDijIziIz j or DikIziSzk). These di-
polar coupling operators remove thez term, leaving one-spin
single-quantum coherences for detection. For the equivalent-
spin case1

4
(I1i I2j 1 I2i I1j ) 5 1

2
(I xi I xj 1 I yi I yj )

O¡
uypulse 1

2
~I xi I z jcosu sin u 1 I ziI xjcosu sin u

1 I ziI z jsin2u 1 I xi I xjcos2u 1 I yi I yj ! . [4]

Only the first two terms are one-quantum coherences and thus
can be made observable by commutation with the dipolar
couplings. This result implies that the observable signal inten-
sity will be proportional to sin 2u, and we can get the maxi-
mum intensity of the zero-quantum coherence whenu 5 p/4.
However, no zero-quantum coherence will be produced by a
p/2 pulse. For the inequivalent-spin case, we have to separate
the two zero-quantum coherences since their evolution fre-
quencies duringt1 period differ from each other:

We can deduce the relative intensity of two observable zero-
quantum coherences (P- andN-type). When spinI is detected, the
intensity of that coherence can be calculated by taking the trace of
the density matrix Tr[rI (t1, t2)g\(Ix 1 iIy)]. Thus the relative in-
tensity of two observable zero-quantum coherences (P- and N-
type) can be written as the simple relation

M1I ~DvS 2 DvI , DvI !

M1I ~DvI 2 DvS, DvI!
5

sinu ~1 2 cosu!

sinu ~1 1 cosu!

5
sin2~u/2!

cos2~u/2!
5 tan2~u/2!. [7]

TheS-spin magnetization is also obtained by simply switching
the indexI to S. The relative intensity calculations for these
iZQCs induced by dipolar couplings can be directly tested by
comparison with numerical simulations and experimental data
since the other dynamics effects on both coherences might be
similar to each other.

The relative intensity of the four spin related high order zero-
quantum terms (in theI4 terms),I1i I1j S2kS2l andI2i I2j S1kS1l

at 2(DvI 2 DvS) and 2(DvS 2 DvI), can be obtained in a

I1i S2k~DvI 2 DvS! 5 I xiSxk 1 I yiSyk 1 iI xiSyk 2 iI yiSxkO¡
uypulse

2 S I xiSzkcosu sin u 1 I ziSxkcosu sin u 1 iI ziSyksin u 2 iI yiSzksin u
1 unobservable terms D

O¡
I 2 S dipolar coupling

2 ~I yicosu sin u 2 Sykcosu sin u 1 iSxksin u 1 iI xisin u ! , [5]

I2i S1k~DvS 2 DvI ! 5 I xiSxk 1 I yiSyk 2 iI xiSyk 1 iI yiSxkO¡
uypulse

2 S I xiSzkcosu sin u 1 I ziSxkcosu sin u 2 iI ziSyksin u 1 iI yiSzksin u
1 unobservable terms D

O¡
I 2 S dipolar coupling

2 ~I yicosu sin u 1 Sykcosu sin u 1 iSxksin u 2 iI xisin u ! . [6]

267INTERMOLECULAR ZERO-QUANTUM COHERENCES



similar way. The relative intensity relation for all high-
er-order terms also follows the same relation, tan2(u/2).
However, these peaks are relatively small since they
need additional weak dipolar couplings to render them
observable.

CLASSICAL CALCULATION USING THE MODIFIED
BLOCH EQUATIONS

We introduce the classical calculation based on non-
linear Bloch equations including only the dipolar de-
magnetizing field (ignoring radiation damping, relax-
ation, and diffusion), which gives an easy way to
predict the signal intensity. At equilibrium the magni-
tude of the magnetization is given by

M0 5 M0
I 1 M0

S. [8]

After the secondu pulse, as well as free evolution during
the t1 and the gradient pulse, the longitudinal and trans-
verse magnetizations are

Mz 5 2sin u $M0
I cos~DvI t1 1 gGTz!

1 M0
Scos~DvSt1 1 gGTz!}

MI1 5 Mx
I 1 iMy

I 5 M0
I $cosu cos~DvI t1 1 gGTz!

1 i sin~DvI t1 1 gGTz!}

MS1 5 Mx
S 1 iMy

S 5 M0
S$cosu cos~DvSt1 1 gGTz!

1 i sin~DvSt1 1 gGTz!} . [9]

After precession duringt2, we have the following equa-
tion if the resonance frequencies of two spins differ by
much more than the reciprocal of the dipolar demagne-
tizing time (8),

Mz 5 2sin u$M0
I cos~DvI t1 1 gGTz!

1 M0
Scos~DvSt1 1 gGTz!}

MI1 5 M0
I $cosu cos~DvI t1 1 gGTz!

1 i sin~DvI t1 1 gGTz!}

3 exp i $DvIt2 2 sin u @tdI
21cos~DvI t1 1 gGTz!

1
2

3
tdS

21cos~DvSt1 1 gGTz!] t2} ,

MS1 5 M0
S$cosu cos~DvSt1 1 gGTz!

1 i sin~DvSt1 1 gGTz!}

3 exp i $DvSt2 2 sin u @tdS
21cos~DvSt1 1 gGTz!

1
2

3
tdI

21cos~DvI t1 1 gGTz!] t2} , [10]

wheretdI 5 (gm0M0
I )21 is the dipolar demagnetizing time of

spin I. Using the identity

exp~iz cosx! 5 O
m52`

`

imJm~ z!exp~imx! , [11]

the observable magnetization becomes

TheS-spin magnetization is obtained by simply switching the index
I to S. To find the effect of the spatial modulation imposed by the
gradient, we collect all the position-dependent terms as follows:

$exp~igGTz! 6 exp(2igGTz!} O
m

exp~igmGTz!

3 O
l

exp~iglGTz! 5 O
m

O
l

@expi $~1 1 m1 l !gGTz%

6 exp i $~21 1 m 1 l !gGTz%] . [13]

In order for the magnetization to be nonzero after spatial averag-
ing, one of the terms in the sum in Eq. [13] must be constant with
respect to position and thus must have a coefficient of zero forz
direction. Therefore, we require the following condition for there
to be a signal:m 1 l 5 61. Using the Bessel function relation
J2n(x) 5 (21)nJn(x), we can see that whenl or m5 0, we have
cross peaks at the axial positions, (0,DvI or DvS):

MI1 5 M0
I 3

1

2
cosu $exp i ~DvI t1 1 gGTz! 1 exp~2i ~DvI t1 1 gGTz!!%

1
1

2
$exp i ~DvI t1 1 gGTz! 2 exp~2i ~DvI t1 1 gGTz!!% 4exp i ~DvI t2!

3 O
m52`

`

imJmS2sin u
t2

tdI
Dexp i ~mDvI t1 1 gmGTz! 3 O

l52`

`

i l JlS2sin u
2

3

t2

tdS
Dexp i ~lDvSt1 1 glGTz! . [12]
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MI1 5 i cosu M0
I exp~iDvI t2!

3 J1S2sinu
t2
tdI
DJ0S2sinu

2

3

t2
tdS
D. [14]

For u 5 p/2 (a zero-quantum CRAZED sequence), the equiv-
alent-spin signal will vanish as mentioned earlier. Using the
Taylor series expansionJ1(x) ' x/2 for the Bessel function,
this equation can be rewritten as

MI1 < 2iM 0
I

sin 2u

4

t2

tdI
exp~iDvI t2! . [15]

Thus the flip angle of the second RF pulse to get the maximum
coherence isp/4 (13, 16), which agrees with Eq. [4].

In the case of cross peaks between inequivalent spins, we
get more complicated equations. Ifl 5 2k andm5 k 6 1 then
cross peaks appear at (k(DvI 2 DvS), DvI). Using the Bessel
function identities

Jn21~ x! 1 Jn11~ x! 5
2n

x
Jn~ x!,

Jn21~ x! 2 Jn11~ x! 5 2J9n~ x!,

J9n~ x! 5 Jn21~ x! 2
n

x
Jn~ x! ,

the zero-quantum coherence is

MI1 5 2i ~21!kM0
I exp~iDvI t2!exp$ik~DvI 2 DvS!t1%

3 HcosuJk21S2sin u
t2

tdI
D 2 k

~1 2 cosu !

sin u

tdI

t2

3 JkS2sin u
t2

tdI
DJJkS2sin u

t2

tdS
D . [16]

This equation implies that high order zero-quantum co-
herences such asF1 5 2(DvI 2 DvS) can be observed, and
that the two zero-quantum magnetizations atDvI 2 DvS

(a kind of P-type ZQ coherence) andDvS 2 DvI (a
kind of N-type ZQ coherence) have different intensi-
ties according to the flip angle of the second RF pulse.
The magnetization for the cross peak at (DvI 2 DvS, DvI)
is

MI1 5 iM 0
I exp~iDvI t2!exp~i ~DvI 2 DvS!t1!

3 HcosuJ0S2sin u
t2
tdI
D 2

~1 2 cosu !

sin u

tdI

t2

3 J1S2sin u
t2
tdI
DJJ1S2sin u

2

3

t2
tdS

D , [17]

but that at (DvS 2 DvI, DvI) is

FIG. 1. (a) A two-dimensional spectrum (2563 1024 data points,u 5 75°) of the intermolecular zero-quantum coherences for a mixture of 50% H2O and
50% DMSO in the normal tube on a Varian 500-MHz Inova NMR spectrometer at 298 K and (b) corresponding numerical simulation based on the modified
Bloch equation including all spin dynamics, relaxation, diffusion, radiation damping, and dipolar demagnetizing field. The relative intensities are listed comparing
to theP-type two-spin iZQC.
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MI1 5 2iM0
I exp~iDvI t2!exp~i ~DvS 2 DvI !t1!

3 HcosuJ2S2sin u
t2
tdI
D 2

~1 2 cosu !

sin u

tdI

t2

3 J1S2sin u
t2
tdI
DJJ1S2sin u

2

3

t2
tdS

D . [18]

If we select the relative intensity part from Eqs. [17] and [18],
and again use the Taylor series expansions for the Bessel
functions, this gives

MI1~DvS 2 DvI , DvI !

MI1~DvI 2 DvS, DvI !
<

1 2 cos~u!

1 1 cos~u!

5
sin2~u/2!

cos2~u/2!
5 tan2~u/2!, [19]

which is exactly the same as the result from the density
matrix calculation, Eq. [7]. From Eq. [16], we can also get
the intensity information about the high-order zero-quantum
coherences at (2(DvI 2 DvS), DvI) and (2(DvS 2 DvI),
DvI). Using the Taylor series expansions for the Bessel
functions,J2(x) ' x2/8, the relative intensity is also propor-
tional to tan2(u/2).

The utility of analytical expressions such as these derives
from their predictive power. Changing the second pulse flip
angle changes the ratio of the peaks. Foru 5 p/4 the intensity
ratio is about 6:1 from Eq. [18]. Foru 5 p/2 the signal does not
vanish (unlike the one-component case mentioned earlier), but
the ratio is 1:1.

RESULTS AND DISCUSSION

The samples used in the relative intensity study consisted
of H2O and DMSO, placed in a 5-mm NMR sample tube
and/or in a 1-mm capillary tube. We added the same amount
of acetone for the three-component experiment. All 2D
experiments were performed at 298 K using a Varian Unity
Inova 500-MHz spectrometer. A gradient ofG 5 10
Gauss/cm was applied along thez-direction. The RF pulse
width for a flip anglep/2 is 5.2ms. TheT1 relaxation times
are 1.3 and 2.3 s for H2O and DMSO, respectively. We set
the pulse repetition time enough long to avoid the possibility
of stimulated echoes (at least 10T1 in every experiment)
(17, 18).

Figure 1 shows a zero-quantum 2D-spectrum and a sim-
ulation (including all spin dynamics, relaxation, diffusion,
radiation damping, and dipolar demagnetizing field) with
75° as the second RF pulse angle. From these results, we can
see clearly the high-order zero-quantum coherences at
2(DvI 2 DvS) and 2(DvS 2 DvI) along the indirectly
detected dimension even though the intensity is much
weaker than those of the two-spin-related zero-quantum
coherences. The simulational results (relative intensity) in-
cluding all mechanisms agree very well with the simple
relation, tan2 (u/2), deduced by quantum and classical cal-

FIG. 2. Comparison of the relative intensities of theP- andN-types cross
peaks in the experimental data. The experimental data from the normal tube
show some deviation from the expected curve, while those from the capillary
tube show better agreement. A few of the points derived from numerical
simulations are also presented for clarity.

FIG. 3. A two-dimensional spectrum (5123 2048 data points,u 5 90°)
of the intermolecular zero-quantum coherences for a mixture of H2O,
DMSO, and acetone on a Varian 500-MHz Inova NMR spectrometer at 298
K which shows various high-order iZQCs along the indirectly detected
dimension. Several representative resonance frequencies along theF1 axis
are marked (see text), whereA, B, and C represent H2O, DMSO, and
acetone, respectively. The initial 512 data points int2 are truncated to
reduce the strong residual magnetization signal while enhancing the signals
from the high order iZQCs.
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culations in the previous sections which ignored radiation
damping, diffusion, and relaxation.

The experimental results also give similar trends, but in
the case of the sample in the normal tube, it shows small
deviations from the expected results (see Fig. 2). Note there
are strong axial position signals (at zero frequency of theF1

axis) which come from residualz-magnetization due to RF
pulse imperfections, relaxation and radiation damping dur-
ing t1. In addition, strong noise arises all along theF1 axis
since there is no rephasing gradient pulse (selecting only
one MQ coherence) after the second RF pulse. Conse-
quently, the total magnetization after the second RF pulse is
large enough to generate radiation damping during thet2
period, and this effect may act as a ‘‘soft’’ pulse (10). This
makes the net effect of the second pulse flip angle smaller,
and therefore the relative intensities also should become
smaller. However, in the case of the sample in a capillary
tube (located inside of a 5-mm normal NMR tube with
D2O), the results agree pretty well with the simple calcula-
tional curve because the effects of the radiation damping are
negligible in this thin tube. In the case of 80% H2O and 20%
DMSO sample (not shown), each cross peak intensity be-
tween inequivalent spins becomes smaller than that in the
case of the equivolume sample (,50%), and the high-order
ZQCs are further reduced (,20%). However, the relative
intensity still keeps the general rule.

In contrast to the case of two-component system, there are a
number of four-spin-related high order zero-quantum coher-

ences in three-component systems such as a mixture of H2O,
DMSO and acetone. In principle, the quantum approach, in this
uncoupled inequivalentABC-spin system, can predict and ex-
plain that there are 36 kinds of four-spin iZQCs. They can be
generated by the combinations of two positive spin operators
(I1

A , I1
B , I1

C) and two negative spin operators (I2
A , I2

B , I2
C) at 19

different resonance frequencies (including each axial position)
along the indirectly detected dimension. Figure 3 shows all
possible four-spin-related iZQCs (,10% of two-spin-related
iZQCs) in this spin system and can be easily assigned by the
quantum approach. For example, the cross peak at (DvB 2
DvC, DvA), which cannot be generated by two-spin iZQCs
without J-coupling, comes from theI1

A I2
A I1

B I2
C term during the

t1 period. In addition, the intensity of each higher-order iZQC
can also be deduced by the quantum approach. For example,
the intensity of the iZQC at (2DvA 2 DvB 2 DvC, DvA)
corresponding toI1

A I2
B I1

A I2
C term during thet1 period is stronger

than those of the other spin positions at (2DvA 2 DvB 2 DvC,
DvB or DvC). The absence (or weakness) of the cross peaks at
(2(DvA 2 DvB), DvC) verifies that the small cross peaks
mostly came from four-spin-related iZQCs. We can also see
that the simple relative intensity rule works well on this three-
component system.

Figure 4 shows a 2D-spectrum and two FIDs using a repre-
sentative pulse sequence,

~p / 2!y 2 t1 2 G 2 ~uy, ~p 2 u !2y! 2 t2,

to suppress the undesirable axial position signals. If the
second pulse flip angle is changed from145° to 2135° the
ZQ coherences (at the axial position) are unaffected, but the
coherences from residualz-magnetization are inverted. Thus
coadding spectra could give mostly ZQ coherences (see FID
profiles). Even though this experiment might lose the rela-
tive intensity information and could not suppress radiation
damping effect in each sequence, the FID signal shows
clearly that this coherence differs from just multiple-spin
echoes.

CONCLUSION

We produced detailed predictions of the relative signal
intensities betweenP- andN-type intermolecular ZQ coher-
ences by introducing a simple quantum calculation using the
spin density matrix. This is exactly the same as the result of
the classical calculation using the modified Bloch equation.
We showed that numerical simulations and the experimental
data agree very well with this expectation, and that various
higher-order iZQCs could be simply explained by the quan-
tum picture.
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FIG. 4. A two-dimensional spectrum with two FIDs using the pulse
sequence to suppress the undesirable axial position signal (changing the
second RF pulse from 45y to 1352y and coadding spectra). The ratio
between the intensities ofP- andN-type peaks is nearly 1. The upper FID
is obtained from the experiment using 45y pulse for the second RF pulse
while the lower one is obtained from the coadding experiment. Coadding
FIDs (mostly iZQC) shows a clearly different profile from those of con-
ventional multiple-spin echoes.
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